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Abstract. We give an account of recent work, where the spatial structure of cities is analysed
as an equilibrium problem between the various uses of land. The mathematical theory of optimal
transportation plays a crucial role in the proof.

1. The Problem

Cities have a structure: there are business centers and residential areas. There are
also mixed areas, where businesses and residences can be found together. Can this
structure be explained by economic arguments? This problem was first addressed
quite recently by Lucas and Rossi-Hansberg [4]. They found an equilibrium
configuration in the radially symmetric case, that is, when the city has circular
shape and the three types of areas are assumed to be annuli. In recent work,
Carlier and Ekeland [2] have been able to find equilibrium configurations in
general situations. The purpose of this talk is to report on this work.

2. The Model

The model consists of workers, firms and land owners who have to fit inside a
given open bounded subset of R2�� (the city). A single good is produced within
the city. It serves both as consumption good and numéraire. No equilibrium is
sought on the goods market: any amount that is not consumed within the city is
exported. The equilibrium will be sought in the land market, where businesses
and residences compete, and this is what will determine the structure of the city.
All inhabitants of the city are identical, Their preferences are given by a utility

function �c�S� �→U�c�S� defined over the quantity c consumed, and the area
S of land occupied. We assume that U is strictly concave, increasing in both
arguments and continuously differentiable.
All firms in the model are identical. They have the same technology with

constant returns to scale. Their production function per unit of business land at a
location x is given by a function �z�n� �→f �z�n�where z=z�x� is the productivity
at x and n=n�x� is the number of workers per unit of business land. It is
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assumed that f is continuously differentiable, strictly increasing with respect to
both arguments and strictly concave with respect to n.
Land owners who are offered a rent per surface unit 
 for business use and a

rent Q for residential use determine a fraction ��
�Q� of land used for production
so that 1−��
�Q� is the fraction of land for residential use. As an example, we
set:

�=1 if 
>Q

�=0 if 
<Q

so that landlords simply rent the land to the highest bidder. If 
=Q, they are
indifferent, and the values of ��x� in that region will be determined by the
equilibrium conditions.
The main features of the model, which are already to be found in the paper of

Lucas and Rossi-Hansberg, are transportation costs and externalities of produc-
tion. However, our view of transportation costs is quite different from theirs, and
this is what enables us to go beyond the symmetric case.
There is a transportation cost for workers: if they live at x and work at y, they

pay c�x−y�. The function c� R2→R is assumed to be strictly convex and C1.
There is a production externality: having many workers together increases the

productivity of each. The productivity is given by

z�x� �=�

(∫
�
��x�y���y�dy

)
(1)

where ��x�dx is the number of workers per unit of land, � some given kernel
approximating the Dirac mass, and �� R→R is increasing
From then on, everyone behaves rationnally: workers maximize their utility,

firms maximize their profits, landlords maximize their rent.

3. Equilibrium

We want to know if there is a situation where no one has any incentive to move:
this will be the structure of the city. In this situation, there must be no way for
workers to increase their utility or to firms to increase their profits. This implies
that all inhabitants must have the same utility ū (otherwise, since they are all
identical, they would try to emulate those who do better) and all firms must
make the same profit (which we take to be 0, meaning that all revenues from the
business goes as rent to the landlords).
An inhabitant who lives at x and brings home � solves the problem:

Max
�S�c�

�U �S�c� �QS+c���
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yielding utility ū. From this we can compute his consumption level c���, the
space he occupies S���, the rent he is willing to pay Q���, and we can also
compute m�x�, the number of dwellers per unit of residential land at x.
If a firm is established at y, where productivity is z, and pays wages �, it solves

the problem

Max
�

�f �z�n�−n� �n�0�

from which we can determine n�z��� the number of workers per unit of business
land at y and the rent 
�z��� the firm can pay at y.
Land owners determine a fraction of land ��
�z����Q���� devoted to busi-

ness use. Let us denote it by ��z�����. We then get densities of workers and
residents � and � from the formulas;

�=�n

�=�1−��m

An equilibriu is a pair ���x����y�� such that:

z�x�=�

(∫
�
��x�y���z�y����y��

)
dy

densities of residents ��x� and densities of jobs ��x� are determined by land
owners through the rents Q���x�� and 
�z�y����y��, there is conservation of
mass:

∫
��x�dx=

∫
��y�dy

and free mobility of labor.
The conservation of mass (the number of residents equals the number of

workers) is a feature of our model which does not hold in the model of Lucas and
Rossi-Hansberg, and it will turn out to be mathematically very useful. By free
mobility of labor, we mean that workers have no incentive to change the place
they work at; the consequences of this assumption will be spelt out in the next
section.

4. Free Mobility of Labor

Let ��x� be the available revenue at location x, and ��y� is the wage paid at
location y. Workers look for the best location to work at:

��x�=sup
y∈�

���y�−c�x�y�� (2)
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and firms try to hire workers away from other firms:

��y�= inf
x∈�

���x�+c�x�y�� (3)

The solution to (w) should be a map y=s�x� which tells us were the people
who live at x work. The solution to (f) should be a map x= t�y� which tells us
where the people who work at y live. We should have s= t−1 and t=s−1. In
addition, the maps s and t should transform the density of residents � into the
density of workers �

�=s���� �= t���

It is surprising that maps ��x� and ��y� should exist which satisfy the above
conditions. It is true, however, and it is a consequence of the theory of optimal
transportation, which we now describe.
Given ����� two continuous positive measures on � with same total mass∫
�=∫

� and a cost function of the form c�x�y�=C�x−y� with C strictly convex
and differentiable, consider the following pair of problems, denoted respectively
by �Primal���� and �Dual����:

inf
s

∫
�
C�x−s�x����x�dx

s� �→�� s���=� (4)

and

sup
���

{∫
�
��dy−

∫
�
��dx

}

��y�−��x��C�x−y��∀�x�y�∈�2 (5)

THEOREM 4.1. The supremum in �Dual���� is attained by a pair ����� of
conjugate functions, and the duality relation

inf�Primal���� =sup�Dual����

holds. In addition, there exists a unique map s� �→� such that

��x�=��s�x��−C�x−s�x��

the map s sends � on �, and s is the unique solution of �Primal���� . Finally, s is
invertible and t=s−1 satisfies:

��y�=��t�y��+C�t�y�−y�"

We refer to [3, 5] and [1] for a proof of this result.
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5. Existence of an Equilibrium

Set:

#�=
{
�����∈C0

++�
��2�
∫
�
�dx=

∫
�
�dy

}

and define an operator T � #→# as follows.
Start from �����∈# a pair of densities.

Step 1. Define the productivity function z by:

z=�
(∫

�
��x�y���y�dy

)

Step 2. Let ����� be the only solution of problem �Dual���� such that min�=1.
Notice that ��� are continuous functions and that ����1.

Step 3. Define new densities by:

S����̃�z����� �=�1−��z������ (6)

�̃�z����� �=��z�����n�z��� (7)

Step 4. Find the only constant % such that:

∫
�
�̃�Z��x����x�+%���x�+%�dx

=
∫
�
�̃�Z��x����x�+%���x�+%�dx

It turns out that T2����� is a pair of Lipschitz-continuous strictly positive
functions.

Step 5.

�′�x� �= �̃�Z��x����x�+%���x�+%�

�′ �= �̃�Z��x����x�+%���x�+%�

It is immediate to check that by construction ��′��′�=T�����∈#.
An equilibrium is a fixed point of T . By Ascoli’s theorem, the map T is easily

seen to be compact. Existence is proved by Schauder’s fixed-point theorem.
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